Appearance
Appearance
2023-02-18
常用的立体几何结论。
体积 | 表面积 | |
---|---|---|
柱体 | ||
锥体 | ||
台体 |
平面过
平面平行于
坐标系可应用平移变换。
@neato; node [@plain] edge [dir=none] x11[@n="
", @(0,0.5)]; y11[@n=" ", @(0.5,0.5)]; z11[@n=" ", @(1,0.5)]; x12[@n=" ", @(0,0)]; y12[@n=" ", @(0.5,0)]; z12[@n=" ", @(1,0)]; x21[@n="
", @(1.5,0.5)]; y21[@n=" ", @(2,0.5)]; z21[@n=" ", @(2.5,0.5)]; x22[@n=" ", @(1.5,0)]; y22[@n=" ", @(2,0)]; z22[@n=" ", @(2.5,0)]; y11 -> z12 -> x21 -> y22 y12 -> z11 -> x22 -> y21
设
垂影必垂斜,垂斜必垂影。
幂势既同,则积不容异。
两几何体在任意高处的截面都相等,则其体积也相等。
可以用微积分直观理解。