贝祖定理

注意:若无特殊说明,本章涉及的变量皆为正整数.

简介 #

对于任意 $a,b$,$ax+by=c\eq gcd(a,b)\mid c$.

证明 #

设 $gcd(a,b)=d$,则:

$$\left\{\begin{aligned} &d\mid a\\ &d\mid b \end{aligned}\right. \eq \left\{\begin{aligned} &d\mid ax\\ &d\mid by \end{aligned}\right. \eq d\mid (ax+by) \eq d\mid c$$

即 $gcd(a,b)\mid c$.